

IBM Control Center Performance and
Tuning Guide

How to Find and Trouble Shoot Performance Issues, Tuning
Tips, and More

Revision 0.965

March 27, 2020

 1

Table of Contents

Table of Contents ... 1

Revision History ... 2

1 Introduction .. 3

2 Database ... 4

2.1 Database Indexes .. 7

2.2 Database Data ... 9

2.2.1 Manually Purging Summary Table Data ... 11

3 EP Startup and Shutdown ... 12

4 Server Reassignment ... 13

5 EventMonitor .. 14

5.1 EventMonitor Properties ... 16

6 Process Summarization ... 17

7 Monitoring Servers ... 19

7.1 OSA Servers .. 19

7.2 Non-OSA Servers .. 23

7.2.1 Connect:Direct ... 23

7.2.2 Connect:Direct File Agent ... 23

7.2.3 Sterling File Gateway and B2Bi ... 24

8 Rules and Actions .. 34

8.1 OS Commands .. 34

8.2 Alert 0 ... 34

9 Miscellaneous ... 35

9.1 Row Counts ... 35

9.2 ICC Web Console .. 36

9.3 Clearing Queued Processes ... 37

9.4 Memory .. 38

9.5 Reporting ... 38

10 Performance Related Engine Properties and Configuration Settings 40

10.1 Engine Properties .. 40

10.2 Configuration Settings .. 49

 2

Revision History

Version Primary Author(s) Description of Version Date Completed

0.1 Dale Ander Initial draft Jan 14, 2019

0.2 Dale Ander Refined and added info on OSA servers Jan 15, 2019

0.3 Dale Ander Refined and added info on B2Bi servers and other
sections

Jan 16, 2019

0.4 Dale Ander Refined, rearranged and added information on
monitoring servers, including B2Bi servers and other
sections

Jan 17, 2019

0.5 Dale Ander Incorporated feedback from reviewers. Jan 18, 2019

0.6 Dale Ander Added information in Reporting and non-OSA server
sections.

Jan 22, 2019

0.7 Dale Ander Incorporated feedback from draft copy readers. Jan 22, 2019

0.8 Dale Ander Incorporated feedback from draft copy readers. Jan 22, 2019

0.9 Dale Ander Minor updates, including one to the definition of

BYPASS_EVENT_MONITOR_FOR_EVENTS.

Feb 5, 2019

0.91 Dale Ander Updated for ICC 6.1.2.1

Tables added with Engine properties and configuration
settings that affect performance.

Aug 27, 2019

0.92 Dale Ander Incorporated feedback on 0.91. Aug 27, 2019

0.93 Dale Ander Added link to ICC Documentation on ICC Database
tuning.

Sep 25, 2019

0.94 Dale Ander Added more details on how to turn on logging in the
Web server to facilitate seeing queries initiated by the
Web console and the time they take to run.

Nov 4, 2019

0.95 Dale Ander Updates to list of properties that do not require a restart. Nov 26, 2019

0.96 Dale Ander Added documentation on the engine property
SUMMARY_TABLES_PURGE_FILE_COUNTS

Feb 14, 2020

0.965 Dale Ander Updated default for

EVENT_MONITOR_EVENT_LIMIT_PER_RUN

to reflect the current value.

Mar 27, 2020

 3

1 Introduction

Performance issues in IBM Control Center (ICC) manifest themselves in multiple ways including:

• Slow web console performance

• SLCs causing false alerts

• Rules that send emails doing so late

• Learning about events on monitored servers, including Sterling File Gateway (SFG), late

• Getting events from Open Server Architecture (OSA) type servers, including IBM Global Mailbox, late

• Information about completed processes and/or file transfers appearing late in the Web console

Many, but not all, of these issues are related to slow database performance, and that's typically where you
should look first.1

Besides the database, SLC events are impacted by the performance of the EventMonitor service in multi-
Event Processor (EP) environments.

OSA server performance is impacted by the performance of the EventProcessorService logic and an ICC
servlet that inserts data received from OSA servers into the ICC CC_UNPROCESSED_EVENT database table.

Data shown in the ICC Web Console Completed Process and Completed File Transfer views, as well as the
Recent file transfer activity dashboard widget, is controlled by the Process Summary logic, which is impacted
by database performance.

And all these things could be impacted by erroneous rules and actions!

This document is intended to help you the reader, whether you are an administrator of ICC, or an ICC support
person, identify why ICC performance issues are occurring as well as provide tips on both avoiding and
resolving them.

1 For documentation on tuning ICC’s database see
https://www.ibm.com/support/knowledgecenter/SS4Q96_6.1.0/com.ibm.help.scc.tuning.doc/SCC_Tune_datab
ase_server.html

https://www.ibm.com/support/knowledgecenter/SS4Q96_6.1.0/com.ibm.help.scc.tuning.doc/SCC_Tune_database_server.html
https://www.ibm.com/support/knowledgecenter/SS4Q96_6.1.0/com.ibm.help.scc.tuning.doc/SCC_Tune_database_server.html

 4

2 Database
ICC, especially as of 6.1, relies heavily on its database to provide functionality. If the database queries –
inserts, updates, and deletes, initiated by ICC run slowly, so will ICC. To know if the database is responsible
for performance problems you should first do a few text-based searches in the ICC engine logs. You can start
by looking for the following strings:

• CCTR135I

• CCTR138I

• excessive

• inordinate

Messages logged with this text may look like this:

• CCTR135I Time to insert monitored server data into EVENTS database table was: 436776

milliseconds

• CCTR138I Time EventMonitor took to retrieve data from EVENTS database table was: 1254366

milliseconds

• updateQueuedProcesses query time excessive

• updateQueuedProcesses query time (t1-t0) excessive - Total time

• ProcessSummaryWorker.getEvents() logic took an inordinate amount of time!

• Time to update nnn processes as ended was excessive.

• ProcessSummaryWorker took an inordinate amount of time to summarize file transfer

• ProcessSummaryWorker took an inordinate amount of time to summarize Process

• ProcessSummaryWorker took an inordinate amount of time to commit database changes to CC_PROCESS

and CC_FILE_TRANSFER

These messages are indicative of:

• Databases whose indices are not being maintained on a regular basis and/or

• Databases that have too much data in them for customers to get the performance they require.

Database inserts and updates should typically take just a few milliseconds - they should not take minutes.
The first thing you might do when you find queries are taking too long is ensure the ICC table indices are
being maintained on a regular basis.

TIP – You may write rules to watch for events whose message IDs are CCTR135I or CCTR138I to avoid
having to look at the ICC engine log files to know when these messages are being logged, which would allow
you to be proactive on performance issues.

 5

Every 6 hours, another set of metrics are output that contains valuable database related metrics (and more)
for that time frame. One that looks like this:

11 Jan 2019 22:33:36,577 280851610 [LicenseChecker] INFO SCCAgentLicenseCheck -

--------Java Heap Memory Details------------

Max Heap Size = 4194304 KB

Current Max Heap Size = 2090560 KB

Free Memory = 2334493 KB

Used Memory = 1859810 KB

--

11 Jan 2019 22:33:36,577 280851610 [LicenseChecker] INFO EventProcessing -

<PRE>--------------------- Event processing Timings ----------------------

TOTAL_EVENTS_PROCESSED: 5762716

TOTAL_TIME_FOR_GETTING_RULE_SESSION: 2065

TOTAL_TIME_FOR_RULE_MATCH: 155706

TOTAL_TIME_FOR_RULE_QUERY: 5629

TOTAL_TIME_FOR_ACTION_PROCESSING: 814011

TOTAL_TIME_FOR_ATTRIBUTE_SETTING: 235

TOTAL_TIME_FOR_RE_PROCESSING: 978645

Average Time for Rule Processing: 0.169824

Average Time for Rule Match: 0.027020

-----------Monitoring monitoring-------------

Average Time to check on polling status .: 0.036744

-----------Action Processing Details----------------------

TOTAL_TIME_FOR_ACTION_PROCESSING: 814011

TOTAL_TIME_FOR_BROADCASTING: 4089

-----------Database Access Timings for CD_STATS_LOG Table ----------------------

TOTAL_CDSTATS_INSERTED : 14968

TOTAL_CDSTAT_INSERTS : 3929

TOTAL_TIME_FOR_CDSTAT_INSERTS: 10828

Average Time for CD_STATS_LOG table Inserts: 2.755918

Average Time for CD_STATS_LOG Insert: 0.723410

-----------Database Access Timings for EVENTS Table ----------------------

TOTAL_EVENTS_INSERTED : 212042

TOTAL_EVENT_INSERTS : 128874

TOTAL_TIME_FOR_EVENT_INSERTS: 605630

Average Time for EVENTS table Inserts ...: 4.699396

Average Time for EVENT insert ...: 2.856179

TOTAL_EVENT_UPDATES : 4244

TOTAL_TIME_FOR_EVENT_UPDATES: 58135

Average Time for EVENTS table Updates ...: 13.698162

</PRE

TIP – Performance of ICC may be impacted by the amount of heap memory allocated to it. When too little
heap memory is allocated to ICC – something done via the command used to start ICC, but just enough to
avoid Out-of-memory exceptions, it can cause the Java garbage collection logic to run more often, which has
a negative impact on performance of ICC. The “Java Heap Memory Details” logged help you ascertain if more
memory for the Java heap could help ICC performance. It is advised you never allocate less than 4GB for
heap.

Primarily you will check the data above to see how well the database performed for the previous 6 hours (the
values shown are all reset after they’re logged). In this output, times for inserts and updates for the
EVENTS, and CD_STATS_LOG, tables are in milliseconds and should not be too large. What’s too large? In
general, double digit values for these numbers are too large. Database inserts and updates should certainly
not take minutes or even 10s of seconds.

You may wonder what the difference is between TOTAL_CDSTATS_INSERTED and
TOTAL_CDSTAT_INSERTS, and TOTAL_EVENTS_INSERTED and TOTAL_EVENT_INSERTS in the

 6

metrics data above. ICC typically inserts multiple rows at a time, i.e. ICC strives to do batch inserts, instead of
inserting one row at a time, because doing so is more efficient. TOTAL_CDSTATS_INSERTED and
TOTAL_EVENTS_INSERTED are the number of rows inserted for the previous 6 hours, while
TOTAL_CDSTAT_INSERTS and TOTAL_EVENT_INSERTS are the number of inserts performed to insert
those rows.

TIP – Databases have performance gathering and reporting tools that may be used to help ferret out
performance issues. E.g. Oracle has Automatic Workload Repository (AWR). The database administrator for
the system should be able to use these tool(s) to help find, recommend changes, and resolve many problems
causing performance issues.

 7

2.1 Database Indexes

Customers need to ensure the ICC database table indices are maintained on a regular basis. If customers do
not have a process in place to do so, they will need to. Indices that are critical to be maintained for good
performance include:

Table Index Comment

EVENTS SEQ_NUM_INDEX Used to prevent duplicate
inserts

EVENTS EVENT_ID_INDEX

EVENTS EVENTS_PKKEY_IX

EVENTS EVENTS_STAT_INDEX Used to find data by the process
summarization logic

EVENTS EVENTS_STAT_IDX Used by a thread named
QueuedProcessesClearJob,
which runs frequently within ICC

MQ_STATS_LOG MQ_EVENT_ID_IX

MQ_STATS_LOG MQ_STAT_INDEX

MQ_STATS_LOG MQ_PKEY_IX

AF_STATS_LOG AF_EVENT_ID_IX

AF_STATS_LOG AF_STAT_INDEX

AF_STATS_LOG AF_PKEY_IX

BP_STATS_LOG BP_EVENT_ID_IX

BP_STATS_LOG BP_STAT_INDEX

BP_STATS_LOG BP_PKEY_IX

FG_STATS_LOG FG_EVENT_ID_IX

FG_STATS_LOG FG_STAT_INDEX

FG_STATS_LOG FG_PKEY_IX

EVENTS_EXT EVENTS_EXT_INDEX Used by summarization logic

EVENTS_EXT EVENTS_EXT_PKEY_IX

CC_PROCESS CC_PROCESS_IDX1

CC_PROCESS CC_PROCESS_IDX2

CC_PROCESS CC_PROCESS_IDX3

CC_PROCESS CC_PROCESS_IDX4

CC_PROCESS_DVG Only has a primary key index

CC_FILE_TRANSFER CC_FILE_TRANSFER_IDX1

 8

Table Index Comment

CC_FILE_TRANSFER CC_FILE_TRANSFER_IDX2

CC_FILE_TRANSFER CC_FILE_TRANSFER_IDX3

CC_FILE_TRANSFER CC_FILE_TRANSFER_IDX4

CC_FILE_TRANSFER CC_FILE_TRANSFER_IDX5

CC_FILE_TRANSFER_DVG Only has a primary key index

ROLL_UP RU_INDEX

TIP – Partitioning the ICC database tables improves performance of ICC queries, including those used to purge
data. If you have not partitioned the ICC database tables – an option presented when the ICC configCC
script it run after ICC is first installed, you should.

You can know if the ICC database tables have been partitioned by looking for the message logged when ICC
runs its purging logic, also known as “the daily operation”. E.g.

14 Jan 2019 16:49:54,408 24004 [CCEngine(CCDale1)] INFO JDBCService - Database is partitioned and

doing daily operation...

You can also look in the BulkDataMover log file (and this is probably the best place to look) to see if the ICC
database tables have been partitioned. E.g.

14 Jan 2019 16:49:47,095 16691 [CCEngine(CCDale1)] INFO BulkDataMover - All tables have been

partitioned and determined that partitioning has been done...

 9

2.2 Database Data

Poor database performance may be incurred simply because you are retaining too much data, relative to
your database server’s “ability”, in the ICC tables to get the performance you require. This is especially true
of the ICC Summary tables as they are currently (as of January 2019) not able to be partitioned (unlike other
ICC database tables).

The ICC Summary table names are:

• ROLL_UP

• CC_PROCESS

• CC_PROCESS_DVG

• CC_FILE_TRANSFER

• CC_FILE_TRANSFER_DVG

Newer releases of ICC, 6.1.1.0 and later, allow you to configure ICC to automatically truncate data from them
after a specified number of days via the Swing console:

TIP – By default, the "Purge Summary Data Older Than (days)" setting (seen in the Swing console dialog
above) is zero, which tells ICC to never purge data from the summary tables. You should change this, but
before you do, you should follow the directions to Manually Purging Summary Table Data. "Purge

 10

Summary Data Older Than (days)" should be at least as large as “Data Older Than (days)”, but maybe not
larger.

When ICC is configured to purge summary table data two engine properties are utilized to do so:

• SUMMARY_TABLES_PURGE_BATCH_SIZE and

• SUMMARY_TABLES_PURGE_QUEUE_SIZE

SUMMARY_TABLES_PURGE_QUEUE_SIZE, whose default is 100000, sets the limit on the SQL used to
ascertain the data to be deleted from the summary tables.

SUMMARY_TABLES_PURGE_BATCH_SIZE, whose default is 100, is used as a limit in the SQL used to
delete summary table data. Since the SQL used to delete data causes far more contention on the database
than the SQL used to find the data to be deleted, the value for this property should be kept relatively small.

Note just setting “Purge Summary Data Older Than (days)” to a value greater than zero will not cause all
summary data to be purged. Another engine property, SUMMARY_TABLES_PURGE_ROLL_UP, whose

default is FALSE, tells ICC whether to purge data from ROLL_UP when other summary data is purged.
(ROLL_UP table data is used by the ICC Web console to facilitate the Recent file transfer activity and
Transfer scorecard dashboard widgets.) By setting SUMMARY_TABLES_PURGE_ROLL_UP to TRUE, data
from ROLL_UP will be purged at the same time data from the other summary tables is purged.

Database performance is also affected by the amount of data retained in the EVENTS table, and its ancillary

tables, which include all the _STATS_LOG tables – BP_STATS_LOG, CD_STATS_LOG, etc. The amount of
data retained in these tables may be controlled via the value specified for “Data Older Than (days)” in the
same dialog shown above.

TIP – Data purging should not be scheduled to run during a busy processing time by ICC. I.e. Data purging
should not be scheduled when the servers monitored by ICC are at their busiest. The time at which the daily
removal of data should be performed should coincide with the time at which ICC is generating the fewest
number of events.

The following Microsoft SQL server query (it will need to be adjusted for other database types) returns the
number of events generated per hour and can be used to ascertain a good time to schedule the daily data
purge:

SELECT convert(char(14), DATE_TIME,126) as dtm, count(EVENT_ID) as number FROM EVENTS (nolock) group

by convert(CHAR(14),DATE_TIME,126) order by dtm

 11

2.2.1 Manually Purging Summary Table Data

If the version of ICC you’re running is old (prior to ICC 6.1.1) and does not have the ability to automatically
purge the summary table data, this section provides instructions on how to do so manually.

TIP – Even if your version of ICC does support purging of the summary table data, if you’ve allowed more
summary table data to accumulate than you now want to keep, it’s wise to perform a manual purge, once,
before turning on the ability in ICC to do so.

The five database tables with summary data are:

• ROLL_UP

• CC_PROCESS

• CC_PROCESS_DVG

• CC_FILE_TRANSFER

• CC_FILE_TRANSFER_DVG

Note if you're not using DVGs (data visibility groups) in ICC, no data will be written to CC_PROCESS_DVG or
CC_FILE_TRANSFER_DVG, which leaves only three tables for you to maintain but we'll cover what you

need to do though as if you had DVGs...

First pick a date that represents the oldest summarization data you want to keep, for example May 19th,
2017

ROLL_UP is straight forward to "truncate" because DATE_TIME, the column you need to reference in SQL,
is just a "varchar" kind of column (as opposed to a "date" type, so SQL to truncate it would just be, for
example:

DELETE FROM ROLL_UP WHERE DATE_TIME < '2017-05-20'

The other SQL you'll need to run is slightly "trickier" as you need to convert a string to a date in either Oracle,
DB2, or MSSQL SQL, which I must leave to you... But other than that, the SQL is very straight forward

Perform this SQL in this order

• DELETE FROM CC_PROCESS_DVG WHERE PROCESS_ID IN (SELECT PROCESS_ID FROM

CC_PROCESS WHERE STARTED < your date)

• DELETE FROM CC_PROCESS WHERE STARTED < your date

• DELETE FROM CC_FILE_TRANSFER_DVG WHERE FILE_TRANSFER_ID IN (SELECT

FILE_TRANSFER_ID FROM CC_FILE_TRANSFER WHERE STARTED < your date)

• DELETE FROM CC_FILE_TRANSFER WHERE STARTED < your date

 12

3 EP Startup and Shutdown
When EPs start, they start a NodeService thread for each monitored server (there is a one-to-one
correspondence between NodeService threads and monitored servers – not counting OSA servers). Prior to
ICC 6.1.2.1, NodeService threads were started, and stopped, serially (one at a time) at EP startup and
shutdown. If you’re running ICC 6.1.2.1, or later, EPs are configured, by default, to start and stop multiple
NodeService threads in parallel at EP startup and shutdown. This behavior is controlled by two engine
properties:

• USE_MULTIPLE_THREADS_FOR_NODESERVICE_STARTUP_AND_SHUTDOWN

• SERVER_STARTUP_SHUTDOWN_THREADS

The default value for USE_MULTIPLE_THREADS_FOR_NODESERVICE_STARTUP_AND_SHUTDOWN is

true. And the default value for SERVER_STARTUP_SHUTDOWN_THREADS is the number of CPUs ICC
ascertains the server ICC is run on has. Unless you configure the system otherwise, NodeService threads will
be started and stopped in parallel as of ICC 6.1.2.1.

For the fastest EP startup and shutdown times, it is not advisable to change these default values.

 13

4 Server Reassignment
Prior to ICC 6.1.2.1, when monitored servers were reassigned, typically because the CEP ascertained a
previously running EP has stopped, or a server rebalance was initiated, they were reassigned one at a time,
serially. Each NodeService thread was stopped on its previous active EP, if the EP was still running, and then
restarted on its new active EP. If you’re running ICC 6.1.2.1, or later, server reassignments will be done, by
default, in parallel, which speeds up the reassignment process significantly. This is controlled by two engine
properties:

• MULTI_THREAD_SERVER_REASSIGNMENT

• SERVER_REASSIGNMENT_QUEUE_SIZE

• SERVER_REASSIGNMENT_THREADS

The default value for MULTI_THREAD_SERVER_REASSIGNMENT is true. The default value for
SERVER_REASSIGNMENT_QUEUE_SIZE is 100000. And the default value for
SERVER_REASSIGNMENT_THREADS is the number of CPUs ICC ascertains the server ICC is run on has.

For the fastest server reassignment processing, it is not advisable to change these default values.

 14

5 EventMonitor
The ICC EventMonitor service only ever runs in the Controller Event Processor (CEP) and is responsible for
passing all events created by all Event Processors (EPs) to the SLC (and FileAgent) service.

TIP – When running ICC with a single EP, you should always specify the engine property

BYPASS_EVENT_MONITOR_FOR_EVENTS with a value of TRUE. When
BYPASS_EVENT_MONITOR_FOR_EVENTS is TRUE, events will go directly to the SLC, and FileAgent,

service instead of indirectly via the EventMonitor service, and contention on the ICC EVENTS database table
will be decreased.

 To know how the EventMonitor service is performing you may look in the engine log for the metrics it
outputs once an hour. They could look like this:

24 Sep 2018 01:00:03,605 4647011 [EventMonitor] INFO EventMonitor - None: ******

EventMonitorMetrics (EVENT_MONITOR_EVENT_LIMIT_PER_RUN = 125, EVENT_MONITOR_EVENT_COUNT_FOR_CATCHUP =

100) ******

Current hour (Australia/Sydney): 0

Notifications broadcast this hour: 3386

Times processEvents() invoked this hour: 719

Times processEvents() invoked this hour without waiting: 0

Times processEvents() invoked this hour without waiting percent: 0

Average time to run processEvents(): 9 ms

Average time to retrieve event data: 2 ms

Average time to populate CachedResultSet: 0 ms

Average time to populate EventCacheManager: 0 ms

Average time to construct notifications: 5 ms

Average time to broadcast notifications: 0 ms

Average time to update LAST_SERIAL_NUM_PROCESSED: 0 ms

Average time to close result set, etc.: 0 ms

processEvents() retry count: 0

Or like this (this is the latest output style):

07 Jan 2019 11:00:04,290 1637440 [EventMonitor] INFO EventMonitor - None: ****** EventMonitor

Metrics (EVENT_MONITOR_EVENT_LIMIT_PER_RUN = 125, EVENT_MONITOR_EVENT_COUNT_FOR_CATCHUP = 100) Hour

(America/Chicago): 10 ******

1 EventMonitor processEvents() invoked = 2875

1b EventMonitor processEvents() invoked without waiting (in catchup) = 2599

1c EventMonitor convertXMLStringsToNotificationsAndBroadcastThem() invoked = 5314

2 Events processed by processEvents() = 330655, Max value = 125, Average = 115

3 Notifications constructed and broadcast by convertXMLStringsToNotificationsAndBroadcastThem() = 330655, Max value

= 100, Average = 62

4 Milliseconds performing EventMonitor processEvents() = 231718, Max value = 1552, Average = 80

4a Milliseconds getting DB connection = 145, Max value = 31, Average = 0

4b Milliseconds running SQL to retrieve events = 533, Max value = 141, Average = 0

4c Milliseconds populating CachedRowSet = 3608, Max value = 719, Average = 1

4d Milliseconds populating EventCacheManager = 82, Max value = 16, Average = 0

4e Milliseconds updating CC_CONTROLLER.LAST_EVENT_SERIAL_NUM_PROC = 3703, Max value = 453, Average = 1

4f Milliseconds closing cached result set and database connection = 159, Max value = 64, Average = 0

4g Milliseconds closing query result set = 571, Max value = 156, Average = 0

4h Milliseconds retrieving data from CRS used to constructing XMLStrings = 318, Max value = 47, Average = 0

4i Milliseconds constructing XMLStrings = 54214, Max value = 1219, Average = 0

4j Milliseconds creating SCCNotifications and broadcasting them = 168351, Max value = 597, Average = 31

5 Milliseconds in convertXMLStringsToNotificationsAndBroadcastThem() = 168351, Max value = 597, Average = 31

5a Milliseconds broadcasting SCCNotifications = 943, Max value = 125, Average = 0

5b constructing SCCNotifications = 167408, Max value = 596, Average = 31

6 Milliseconds constructing XMLStrings, converting them to notifications and broadcasting them = 222998, Max value

= 1525, Average = 77

7 Milliseconds delta between ACTION_COMPLETED and reconstituting events = 85501, Max value = 4953, Average = 2590

One key metric to look for in the data logged is the number of times processEvents was invoked relative

to how many times it was invoked “without waiting”. When processEvents is invoked without waiting, it
is an indication that the EventMonitor service is unable to keep up with the current load of events. And this
may, or may not, be related to poor database performance (but it typically is).

 15

Note when the times processEvents is invoked matches the times processEvents is invoked without

waiting it means the EventMonitor service was not keeping up with the number of events generated by the
system at any point during the hour prior to the metrics being logged.

TIP – If SLCs are incorrectly generating events about things not happening, you can use these two queries to
see if the EventMonitor is currently behind in getting events to the SLC service, and if so, by how far:

• SELECT LAST_EVENT_SERIAL_NUM_PROC FROM CC_CONTROLLER

• SELECT MAX (SERIAL_NUM) FROM EVENTS

The first query’s result tells the “serial number” value of the event the EventMonitor last processed – it’s a
unique value assigned by the database as data is inserted into the EVENTS table, while the result of the
second query tells the “serial number” of the last event in EVENTS that needs to be processed. The
difference between those two values is approximately how far "behind" the EventMonitor logic is. The
values should typically be close (within a thousand or two).

In ICC 6.1.2 releases after August 2019 the metric to show the average delta between ACTION_COMPLETED
and when an event was reconstituted was added. E.g.

7 Milliseconds delta between ACTION_COMPLETED and reconstituting events = 85501, Max value = 4953, Average = 2590

Since the ACTION_COMPLETED value represents the time, in milliseconds since January 1, 1970 an EP

completed processing of an event, this metric gives a user an approximation of the delay between when an
event was processed by one EP and its delivery to other services, including the SLCService, by the CEP. When
this delay is long, and SLC schedule tolerances are small, erroneous SLC events are likely to occur. You want
this maximum value and average to be as small as possible.

Other important metric values to look at include:

• Average time to retrieve event data

• Average time to construct notifications

• Average time to broadcast notifications

• Milliseconds running SQL to retrieve events = 533, Max value = 141, Average = 0

• Milliseconds broadcasting SCCNotifications = 943, Max value = 125, Average = 0

• constructing SCCNotifications = 167408, Max value = 596, Average = 31

When the values for “Average time to retrieve event data” or “Milliseconds running SQL to retrieve
events” are large – queries should take milliseconds, not 10s or minutes of seconds, database performance is
having a negative impact on the performance of the EventMonitor service.

When the values for “Average time to construct notifications” or “constructing SCCNotifications” are
large, CPU limitations may be having a negative impact on the performance of the EventMonitor service.
Note that constructing notifications also requires database I/O. Increasing the value for the engine property
EVENT_MONITOR_THREADS, described below, may improve this performance.

When the values for “Average time to broadcast notifications” or “Milliseconds broadcasting
SCCNotifications” are large – more than a few milliseconds, it could be an indication that you are using “Alert
0” actions. Erroneous use of “Alert 0” actions can be a major source of performance problems in ICC. Refer

to the section Rules and Actions

 16

As ICC events are generated, they are processed by the RuleService in the EP they originated from, and the
number of rules defined, and the actions associated with rules that are triggered, can have a large impact on
the performance of ICC.

TIP – Disable or delete all ICC rules, including built-in rules, that are not being used to improve ICC
performance.

ICC can typically handle having 1000s of enabled rules without incurring performance problems, but while
some actions, e.g. email actions, have little impact on ICC performance, others can have a large, negative,
impact, e.g. OS Commands and Alert 0 actions.

5.1 OS Commands

OS Commands specify a script, or batch file, ICC is to perform when a rule is triggered by an event. When a
script or batch file initiated by ICC takes a long time to run it delays processing of other events by ICC so be
sure they always run quickly.

TIP – When scripts or batch files will take more than a few milli-seconds to run, have them execute whatever
they do asynchronously, instead of synchronously, when possible.

Alert 0 for more details.

5.2 EventMonitor Properties

Multiple engine property values may be changed to alter the performance of the EventMonitor service,
including:

• EVENT_MONITOR_EVENT_LIMIT_PER_RUN

• EVENT_MONITOR_EVENT_COUNT_FOR_CATCHUP

• EVENT_MONITOR_THREADS

• EVENT_MONITOR_JUST_SLC2

EVENT_MONITOR_EVENT_LIMIT_PER_RUN and EVENT_MONITOR_EVENT_COUNT_FOR_CATCHUP

dictate how much data the EventMonitor service will attempt to read from the EVENTS table in one batch
(it’s the database query limit), and the count of records retrieved at which it will enter “catchup mode”,
respectively. (In “catchup mode” the EventMonitor service will not wait before querying for more data to
process.) The default values for these properties are 1000 and 2003, respectively, and increasing them may
or may not help with performance but you may try.

TIP – the EVENT_MONITOR_COUNT_FOR_CATCHUP value should always be made slightly smaller than the
value for EVENT_MONITOR_EVENT_LIMIT_PER_RUN for best performance. This way even if the
EventMonitor does not get limit events to process, if it gets a big percentage of the limit it will immediately
look for more to process rather than waiting before it “looks” again.

EVENT_MONITOR_THREADS is a new property (introduced in all 6.1 releases of ICC in January 2019) whose
default is the number of CPUs the server running the EP has4. In theory this property should reduce the

2 Available as of ICC 6.1.2.1

3 Prior to ICC 6.1.2.1 the default values for EVENT_MONITOR_EVENT_LIMIT_PER_RUN and
EVENT_MONITOR_EVENT_COUNT_FOR_CATCHUP was 125 and 100, respectively.

4 Prior to ICC 6.1.2.1 the default value for EVENT_MONITOR_THREADS was 2.

 17

amount of time spent “constructing XMLStrings” as its value is increased. However, depending on

the number of CPUs allocated to the server running the ICC CEP it may, or may not, help overall
EventMonitor performance to increase its value.

EVENT_MONITOR_JUST_SLC, a new property introduced in ICC 6.1.2.1, may be set true when no
Connect:Direct File Agents are monitored by ICC. Setting this property to true allows the EventMonitor logic
to limit the event data retrieved, and therefore the events created and passed on, which allows it to run
faster and decrease the delta between ACTION_COMPLETED and reconstituting events.

TIP – If SLCs are incorrectly generating events about things not happening, check the maximum and average
milliseconds delay metric (added to ICC 6.2.1 in August 2019). If either value is large you may need to:

• Ensure ICC database table indices are being maintained

• Increase EVENT_MONITOR_LIMIT_PER_RUN and EVENT_MONITOR_EVENT_COUNT_FOR_CATCHUP

• Increase EVENT_MONITOR_THREADS

• Set EVENT_MONITOR_JUST_SLC if no Connect:Direct File Agents are monitored

6 Process Summarization
Data displayed by the ICC Web Console’s Recent file transfer activity dashboard widget, and the Completed
Processes, Queued Processes, and the Completed File Transfer views, comes directly from the ICC summary
database tables:

• ROLL_UP

• CC_PROCESS

• CC_PROCESS_DVG

• CC_FILE_TRANSFER and

• CC_FILE_TRANSFER_DVG

The ICC ProcessSummaryService takes detailed data written to the ICC EVENTS, and other ancillary tables,

and “summarizes” that information for insertion into the various ICC “summary” tables which the ICC web
console queries to facilitate its displays and views.

To know how the ProcessSummaryService is performing you may look in the ICC engine log for the metrics it
outputs once an hour. They could look like this:

****** Process Summary Metrics for the Past Hour ******

0 Events retrieved by ProcessSummaryWorker to do summarization = 13085, Max value = 431, Average = 24

0 Summarized processes for All server types = 1948

0 Summarized processes for B2B Integrator/Sterling File Gateway servers = 1942

0 Summarized processes for Sterling Connect:Direct servers = 6

0 Summarized transfers for All server types = 664

0 Summarized transfers for B2B Integrator/Sterling File Gateway servers = 64

0 Summarized transfers for Sterling Connect:Direct servers = 600

1 Milliseconds in ProcessSummaryWorker = 52468, Max value = 4633, Average = 97

1a Milliseconds running query to get processes to be summarized = 2059, Max value = 1391, Average = 3

1b Milliseconds performing EntityUtil.preLoad() = 1126, Max value = 520, Average = 2

1c Milliseconds processing results of query to get processes to be summarized = 0, Max value = 0, Average = 0

1d Milliseconds to getEvents for summarization = 37046, Max value = 4603, Average = 68

1d1 Milliseconds in getEvents to execute SQL to retrieve events for summarization = 36086, Max value = 4603, Average = 66

1d2 Milliseconds in getEvents to construct events from result set for summarization = 894, Max value = 141, Average = 1

1d3 Milliseconds in getEvents to get database connection used to retrieve events = 49, Max value = 16, Average = 0

1e Milliseconds performing getEventsByProcess = 171, Max value = 140, Average = 0

1f Milliseconds sorting the events prior to passing them to the summarizer = 32, Max value = 16, Average = 0

1g Milliseconds summarizing All processes and transfers = 3956, Max value = 265, Average = 2

1g1 Milliseconds summarizing B2B Integrator/Sterling File Gateway processes and transfers = 3802, Max value = 265, Average = 1

1g1 Milliseconds summarizing Sterling Connect:Direct processes and transfers = 154, Max value = 31, Average = 25

1h Milliseconds adding SQL to insert data into CC_FILE_TRANSFER = 238, Max value = 79, Average = 0

1i Milliseconds committing database changes to CC_PROCESS and CC_FILE_TRANSFER = 7224, Max value = 1594, Average = 13

1j Milliseconds to updateStatistics (Updates to ROLL_UP) = 475, Max value = 62, Average = 0

2 Milliseconds summarizing All transfers = 138, Max value = 16, Average = 0

2 Milliseconds summarizing B2B Integrator/Sterling File Gateway transfers = 0, Max value = 0, Average = 0

 18

2 Milliseconds summarizing Sterling Connect:Direct transfers = 138, Max value = 16, Average = 0

2a Milliseconds handling tag mapping for All transfers = 31, Max value = 16, Average = 0

2a1 Milliseconds handling tag mapping for B2B Integrator/Sterling File Gateway transfers = 0, Max value = 0, Average = 0

2a1 Milliseconds handling tag mapping for Sterling Connect:Direct transfers = 31, Max value = 16, Average = 0

2b Milliseconds getting DVG names associated with transfers being summarized = 0, Max value = 0, Average = 0

The values shown are ordered by the numbering on the left. When letters are used, e.g. 1a, 1b, 1c, it’s
typically done because those are a breakdown of the higher value, in this case 1. (1d1, 1d2, 1d3 are
breakdown of the value for 1d.)

Always pay attention to the time spent doing database I/O above. Specifically, the times for:

• Milliseconds running query to get processes to be summarized

• Milliseconds in getEvents to execute SQL to retrieve events

• Milliseconds committing database changes to CC_PROCESS and CC_FILE_TRANSFER

The queries to get processes to be summarized run against the CC_PROCESS table. Long times here
indicate a lack of maintenance being done to the ICC summary database tables and/or having so much data in
them the database server performs poorly. Likewise, for the time spent committing database changes to
CC_PROCESS and CC_FILE_TRANSFER.

The SQL used by getEvents to retrieve events runs against the EVENTS table. Long times here could indicate

too many days of summary table data being retained. The process number limit for Connect:Direct servers is
only 99,999, at which point process numbers begin at one again. When customers retain enough days of
data that process numbers on monitored Connect:Direct servers repeat, it can cause long summary times,
and increased memory usage, since when ICC retrieves all events associated with processes it is not able to
distinguish between unique instances of them when their process names and numbers are identical, which
results in ICC combining the events for multiple processes and longer than normal summary times.

You should also compare the metric values for 1d1, Milliseconds in getEvents to execute SQL to 1d2,
Milliseconds in getEvents to construct events. If 1d2 is larger than 1d1 it’s an indication that either the
amount of memory, or lack thereof, allocated to ICC, or the processor/CPU for the server on which ICC is
running, is limiting ICC performance.

TIP - There are queries (see below) that may be run to ascertain the counts of processes to be summarized
and the counts of processes that have been summarized.

Processes yet to be summarized:
• SELECT COUNT(*) FROM CC_PROCESS WHERE PROC_STATUS IN ('upgraded', 'ended', 'user completed

ns')

• SELECT STARTED_DAY, COUNT(*) FROM CC_PROCESS WHERE PROC_STATUS IN ('upgraded', 'ended', 'user

completed ns') group by STARTED_DAY order by STARTED_DAY

Processes summarized:

• SELECT COUNT(*) FROM CC_PROCESS WHERE PROC_STATUS IN ('failed', 'success', 'user completed',

'errors')

• SELECT STARTED_DAY, COUNT(*) FROM CC_PROCESS WHERE PROC_STATUS IN ('failed', 'success', 'user

completed', 'errors') group by STARTED_DAY order by STARTED_DAY

There are engine properties that may be used to affect the performance of the ProcessSummaryService logic
including:

• PROCESS_SUMMARY_THREADS – Default is 4.

• PROCS_TO_SUMMARIZE_AT_ONCE – Default is 50. Max allowed is 255.

 19

• MAX_PROCESSES_TO_SUMMARIZE_AT_ONCE5 – default is 5000.

In theory, the larger the value for PROCESS_SUMMARY_THREADS the better the ProcessSummaryService
logic will perform but actual performance depends on the server ICC is running on and the amount of
memory allocated to it. The larger the thread count, the higher the memory requirements will be. Likewise,
for the number of processes summarized at once.

TIP – Of the two engine properties that may be used to affect performance of the ProcessSummaryService,
try increasing the PROCESS_SUMMARY_THREADS value first.

MAX_PROCESSES_TO_SUMMARIZE_AT_ONCE limits the query used to find processes ready to be
summarized at one time.

5 Introduced in ICC 6.1.2.1

 20

7 Monitoring Servers
Server status and activity are monitored by ICC either by polling servers or by monitored servers pushing
events to it. There are two types of monitored servers in ICC:

• OSA and

• Non-OSA

All OSA server types – a relatively new server type for ICC, by definition, push events related to their activity
to ICC, while non-OSA servers are typically polled for activity that has occurred since the last time they were
contacted.

Server types that are polled include:

• Connect:Direct

• B2Bi/Sterling File Gateway

• Connect:Express

• Sterling Secure Proxy

Server types that push events to ICC include:

• ITXA

• Global Mailbox

• FTP z/OS

ITXA and Global Mailbox are OSA servers and their monitoring is handled by the EventProcessorService and
the UnprocessedEventService within ICC. Each ICC EP has one EventProcessorService and one
UnprocessedEventService to handle monitoring for all OSA servers assigned to it. Non-OSA server types have
a service within ICC known as a NodeService that handles monitoring of their activity and status. There is a
CDNodeService for Connect:Direct servers, a GISNodeService for B2Bi servers, etc. And unlike OSA servers,
there is one NodeService running in an EP for each non-OSA server assigned to it. I.e. if an EP has 500 non-
OSA servers assigned to it there will be 500 NodeServices running in that EP while an EP will only have one
EventProcessorService and UnprocessedEventService regardless of how many OSA servers are assigned to it.

7.1 OSA Servers

As previously mentioned, OSA servers push events related to their activity and status to ICC and there are
two services in ICC utilized to handle processing of OSA server data, the EventProcessorService and the
UnprocessedEventService. Performance of these services is controlled by a combination of:

• Configuration file data in EventProcessorService.xml and

• Engine property values.

OSA event processing may be performed synchronously or asynchronously (depending on the version of ICC
you’re running), and asynchronous OSA event processing is controlled by various engine property values.

Originally only synchronous processing was supported, and it is currently the default – it’s not clear that
asynchronous processing performs better than synchronous processing, and the configuration parameters
stored in the EventProcessorService.xml data, which is kept in the CC_FILES database table, controlled all
aspects of OSA server processing. The parameters in EventProcessorService.xml that affect processing are:

• hbCheckFrequency

 21

• historyCheckFrequency

• eventsToProcessAtOnce

The following table includes the default values for these configuration parameters and explains how they’re
used:

Parameter Details Default

hbCheckFrequency A value in milliseconds that controls the frequency at which the
EventProcessorService checks to see which OSA servers are late
in sending in Heartbeat events, which is the indicator that they
are down.

The larger this value is, the longer the delay could be for ICC to
ascertain that a down OSA server is down.

10000

historyCheckFrequency A value in milliseconds that controls the frequency at which the
EventProcessorService checks for new OSA events to process
from servers monitored by this EP.

Note when the number of OSA events processed matches
eventsToProcessAtOnce no wait is performed between

checks for new OSA events to process. This is referred to as
catchup mode.

This property is only used when OSA event processing is done
synchronously.

10000

eventsToProcessAtOnce Specifies the limit on OSA records to be retrieved by the
UnprocessedEventService from the CC_UNPROCESSED_EVENT
table.

This property is only used when OSA event processing is done
synchronously.

1000

 22

Since OSA servers were introduced to ICC, additional engine properties may now be used to also affect, and
in some cases override, the performance of OSA server monitoring. These engine properties are:

• MULTI_THREAD_OSA_EVENT_PROCESSING

• OSA_EVENTS_TO_GET_AT_ONCE_COUNT

• OSA_EVENTS_TO_PROCESS_QUEUE_SIZE

• TIME_BETWEEN_PROCESSING_QUEUED_OSA_EVENTS

• TIME_BETWEEN_GETTING_UNPROCESSED_OSA_EVENTS

The following table includes the default values for these engine properties and explains how they’re used:

Property Details Default

MULTI_THREAD_OSA_EVENT_PROCESSING Controls whether OSA event processing is
done in a synchronous fashion, where by OSA
records received are retrieved from the
database, then processed, and then deleted
from the database, or in an asynchronous
fashion, where one thread –
handleUnprocessedEvents, is used to process
OSA records previously retrieved from the
database by another thread –
queueUnprocessedEvents, which retrieves OSA
records from the database and queues them
for processing by handleUnprocessedEvents.

FALSE

OSA_EVENTS_TO_GET_AT_ONCE_COUNT Sets the limit used in queries initiated by the
queueUnprocessedEvents thread to retrieve
unprocessed OSA events.

This property is only used when OSA event
processing is done asynchronously.

500

OSA_EVENTS_TO_PROCESS_QUEUE_SIZE Sets the limit on the queue used to contain
unprocessed OSA events retrieved by
queueUnprocessedEvents thread, which are
subsequently processed by the
handleUnprocessedEvents thread.

Always make the value for this property be
some multiple, greater than one, of the
OSA_EVENTS_TO_GET_AT_ONCE_COUNT

value.

This property is only used when OSA event
processing is done asynchronously.

5000

TIME_BETWEEN_PROCESSING_QUEUED_OSA_EVENTS A value in milliseconds that dictates how long
the handleUnprocessedEvents thread waits
after processing the previous batch of OSA
events.

5000

 23

Property Details Default

Note when the batch size of OSA events
previously processed matches the
OSA_EVENTS_TO_PROCESS_QUEUE_SIZE
size, no wait is performed. This is referred to
as catchup mode.

This property is only used when OSA event
processing is done asynchronously.

TIME_BETWEEN_GETTING_UNPROCESSED_OSA_EVENTS A value in milliseconds that dictates how long
the queueUnprocessedEvents thread waits
after retrieving and queuing unprocessed OSA
events.

Note when the number of OSA events
previously retrieved matches the
OSA_EVENTS_TO_GET_AT_ONCE_COUNT
value no wait is performed. This is referred to
as catchup mode.

This property is only used when OSA event
processing is done asynchronously.

5000

 24

7.2 Non-OSA Servers

To limit the resources consumed by each NodeService a configuration parameter named
simultaneousCdPollers in the CCEngineService configuration data, whose default value is 7, is
used. (Don’t worry about the name of the parameter, it is used by all NodeServices, not just the
CDNodeService.)

TIP – For optimum performance simultaneousCdPollers is typically set to 25% of the number of total
number of polled monitored server types assigned to each EP with a maximum value of 30. This is just a
guideline and not definitive however.

There are events generated to help you know when monitoring is not occurring at the expected rate for
servers that are polled:

CCNS018E Monitor rate out of compliance. Server ID: {0} Last poll Date/time:

{1} Monitor Rest Time: {2}

CCNS029I Monitor rate back in compliance. Server ID: {0} Last poll date/time:

{1} Monitor Rest Time: {2}

TIP – Enable the built-in rule “Monitoring rate out of compliance”, which uses these events in a linked rule to
know when polling rate of any non-OSA server is not occurring at the expected rate for over an hour. This
rule is often triggered because simultaneousCdPollers is set too low for activity being monitored
and/or the number of monitored servers is too high.

7.2.1 Connect:Direct

For best performance, NodeService threads for Connect:Direct servers establish connections to their
respective monitored servers once, and do not disconnect those connections after each poll unless an error
occurs. When monitoring more than a few thousand Connect:Direct servers though it would be possible for
ICC to attempt to exceed the number of socket connections allowed by the server’s operating system the EP
runs on.

In ICC 6.1.2.1 the engine property NON_PERSISTENT_CD_CONNECTION was introduced to avoid

exceeding allowed socket connections. By setting this property to true, its default is false, Connect:Direct
NodeServices will do a disconnect after each poll cycle and reestablish the connection to their Connect:Direct
server at the beginning of each poll cycle.

Unless exceeding the number of socket connections is a problem for one, or more, of your EPs, you should
not change the default setting for NON_PERSISTENT_CD_CONNECTION from false to true.

7.2.2 Connect:Direct File Agent

The FileAgentService, which runs only in the CEP, is responsible for handling monitoring of Connect:Direct File
Agents associated with monitored Connect:Direct servers. Monitoring of File Agents is achieved in the
FileAgentService by processing the SNMP traps they send that contain their status and activity details.

In ICC 6.1.2.1 the following engine properties were introduced:

• FILEAGENT_MONITOR_RATE – default 60

• MAX_TIME_TO_BEGIN_TRAP_PROCESSING_WITHOUT_WARNING – default 30000

• SHOW_FILE_AGENTS

 25

FILEAGENT_MONITOR_RATE dictates the number of seconds between checks the ICC FileAgentService

performs to ensure all monitored Connect:Direct File Agents have sent traps within their specified heart beat
interval, which let ICC know they are still running.

The larger the value for FILEAGENT_MONITOR_RATE is, the less time the FileAgentService spends
checking to ensure traps were received on-time from File Agents, leaving more time for other ICC processes
and threads, thus making ICC more efficient. On the other hand, the larger the value for
FILEAGENT_MONITOR_RATE is, the longer it will take for ICC to determine a Connect:Direct File Agent has
stopped running. Unless you’re monitoring tens of thousands of File Agents, the default value for this
property should be fine.

The property MAX_TIME_TO_BEGIN_TRAP_PROCESSING_WITHOUT_WARNING, a number of
milliseconds with a default of 30000, tells ICC to generate a warning message in the log files if the time at
which an SNMP trap received from a monitored Connect:Direct File Agent, and the time at which the ICC
FileAgentService begins processing that trap, is exceeded. These warnings contain the following text:

• FileAgentService took an inordinate amount of time to begin processing of trap - <delay> ms

Trap: <trap data>

The existence of these messages in the EP log files indicates performance problems are occurring within ICC
and you may need to increase the heartbeat interval your Connect:Direct File Agents are configured with, as
well as increase the ICC engine property value for FILEAGENT_MONITOR_RATE, to avoid them.

Lastly, the engine property SHOW_FILE_AGENTS, controls whether the status of monitored Connect:Direct
File Agents should be displayed in the ICC Swing console. By default, SHOW_FILE_AGENTS is true if the

number of monitored servers is less than the value of another engine property,
TREE_NODE_SIZE_LIMIT, and false otherwise.

Note TREE_NODE_SIZE_LIMIT was also introduced in ICC 6.1.2.1 and its default is 5000.

Setting SHOW_FILE_AGENTS true will cause the status of File Agents to be displayed in the Swing console
regardless of the number of monitored servers. Note displaying the status of File Agents in the Swing console
is very CPU intensive, and slows performance of the ICC Swing console, so you are advised not to set the
property SHOW_FILE_AGENTS to anything other than false.

Note the ICC Web console handles display of monitored Connect:Direct File Agents well without the
performance issues that will occur within the ICC Swing console.

7.2.3 Sterling File Gateway and B2Bi

Monitoring B2Bi servers may be very problematic from a performance standpoint and difficult to
troubleshoot as there are multiple factors involved that could cause issues, including:

• Poor B2Bi database performance

• Poor ICC database performance

• Simply too much activity to monitor

TIP – For best performance do not run B2Bi on the same server that runs ICC.

TIP – For best performance do not use the same database server for B2Bi and ICC.

 26

The first place to look when performance problems are reported is the B2Bi metrics log file contents. There
you will find output, generated once an hour for each monitored B2Bi server, by the three main threads in a
GISNodeService used to monitor B2Bi servers:

• GetAftHistoryTask – used for monitoring the “advanced file transfer” data, also known as protocols

• GetBpHistoryTask – used for monitoring business process activity and

• GetFgHistoryTask – used for monitoring Sterling Filegateway activity

 27

These threads are responsible for:

• Converting the data received into Control Center events, aka SCCNotifications

• Doing “pre-rule” processing – i.e. looking for a rule match so the RuleService does not have to

• Storing the events generated in the EVENTS, EVENTS_EXT and appropriate _STATS_LOG tables

• Notifying the ProcessSummaryService about processes seen to have started and ended

• Passing events on to the RuleService for processing

Note the GetAftHistoryTask thread also handles the retrieval of other information from the B2Bi server, such
as adapter status information, in addition to its primary function – getting protocol activity data.

TIP – Monitoring the adapter status on B2Bi servers is an onerous process and has a negative impact on
performance. The default “Monitor Rest Time” for updating the status of B2Bi adapters is one minute. You
can lessen the impact on performance of B2Bi monitoring by increasing this value, which is done via the
monitored server’s Server Properties Settings dialog.

 28

Each of these three main threads log metrics, once an hour, for each B2Bi server monitored by ICC. When
troubleshooting performance issues related to the monitoring of B2Bi servers, always start by looking at the
“high level”, summary messages, output to the B2Bi metrics log file. E.g.

• 14 Jan 2019 17:00:00,006 629602 [qasimnt3(3)] INFO B2BiMetrics - CGIS007I AFT Avg ms/req:

508, Avg # records/req: 2, # recs: 23, # reqs: 11 (1 in catchup), Avg ms to build events/req:

27, Avg events/req: 7, Avg log ms: 117, Avg # events/batch: 39, # events: 78

• 14 Jan 2019 17:00:00,006 629602 [qasimnt3(3)] INFO B2BiMetrics - CGIS008I SFG Avg ms/req:

714, Avg # records/req: 82, # recs: 909, # reqs: 11 (1 in catchup), Avg ms to build

events/req: 42, Avg events/req: 27, Avg log ms: 296, Avg # events/batch: 74, # events: 298

• 14 Jan 2019 17:00:00,006 629602 [qasimnt3(3)] INFO B2BiMetrics - CGIS009I BP Avg ms/req:

2362, Avg # records/req: 3473, # recs: 79886, # reqs: 23 (17 in catchup), Avg ms to build

events/req: 3028, Avg events/req: 7021, Avg log ms: 55, Avg # events/batch: 98, # events:

161496

Note each of the summary messages above indicate the identity of the monitored server they’re related to
inside the square brackets (“[]”) that follow the time stamp for each log message.

For performance issues related to:

• Protocol data collection, which is rarely true, focus on the CGIS007I message data, and the output
that follows it.

• Sterling Filegateway data collection, focus on the CGIS008I message data, and the output that
follows it

• Business process data collection, focus on the CGIS009I message data, and the output that follows
it

 29

Each of the summary messages provide a wealth of information that can quickly help isolate where to look
for problems, if not to identify what they are. Here are details on each value they contain:

What Description

Avg ms/req Response time for requests to the B2Bi server for data.

The response time is affected by the number of records
received per request, but it should never exceed 20
seconds and it should be much lower – sub 10 seconds.

Long request response times are typically due to
unmaintained B2Bi database tables and/or indices.

Avg # records/req Average number of records received per request by ICC.

When B2Bi servers are busy, this number should match,
or be close to, the limit specified for requests in ICC,
which comes either from the CCEngineService

configuration value for recordLimit, or

siRecordLimit (when specified).

Note these configuration values are settable via the ICC
Web Console.

The default value for siRecordLimit is 4999. Better

performance is obtained from busy B2Bi servers when it
is set higher. 20000 is the recommended value for
siRecordLimit to use but increasing the value

beyond the default of 4999 may require changes to B2Bi.

Always consult support prior to increasing
siRecordLimit beyond its default value.

recs Total number of records received from B2Bi for the hour
reported on.

reqs Total number of requests made by ICC for data from B2Bi
during the hour reported on.

Following the number of requests, you may see a
“catchup” count also. E.g. (17 in catchup) When

the catchup count matches, or is a large percentage, of
the number of requests made, it’s an indication that ICC
was unable to keep up with the level of activity on the
B2Bi server during the hour reported.

ICC is typically unable to “keep up” because of long
response times, but it may be due to other factors
including the time to insert events into the ICC database,
or the time ICC takes to build events to be inserted.

Avg ms to build events/req Average time ICC takes to construct events from data
received from B2Bi.

When this number is large it can cause ICC to fall behind
in monitoring B2Bi.

 30

What Description

Avg events/req Average number of events generated from data received
per request to B2Bi.

Avg log ms Average time ICC took to add the events it created to the
ICC database from the B2Bi data it received.

When this number is large it can cause ICC to fall behind
in monitoring B2Bi.

Avg # events/batch Average number of events inserted per SQL INSERT
initiated by ICC to add the events it created to the ICC
database.

events Total number of events generated by ICC from the data
received from B2Bi during the hour reported on.

You can use this value to ascertain the times of heavy
loads on the B2Bi server.

 31

Each summary log message is followed by details like this:

15 Jan 2019 10:00:07,205 61836801 [qasimnt3(3)] INFO B2BiMetrics - Metrics for the current hour

 Total time to get data: 29877 ms

 Last request to get data took: 687 ms (< 5000 ms is preferable)

 Maximum time to get data took: 875 ms (< 5000 ms is preferable)

 Average time to get data: 497 ms (< 5000 ms is preferable)

 Total number of requests for data: 60

 Requests for data in catch up mode: 0

 Events created: 297

 Total time to log events: 110 ms

 Time to log data for data last received: 16 ms (< 3000 ms is preferable)

 Maximum time to log data: 32 ms (< 3000 ms is preferable)

 Average time to log events: 27 ms (< 3000 ms is preferable)

 Total events logged: 4

 Total time to get and process data: 30267 ms

 Time to get and process data for last request: 703 ms (< 10000 ms is preferable)

 Maximum time to get and process data for a request: 875 ms (< 10000 ms is preferable)

 Average time to process data received: 4 ms (< 5000 ms is preferable)

 Total records received: 1094

 Records received for last request: 0

 Maximum records received for one request: 504

 Average number of records received per request: 18

 Average number of events created per request: 4

 Average number of events logged per request: 74

 Additional values (for internal use)

 AbstractHistoryHandler.logEventToDB: 110 ms

 AbstractHistoryHandler.logStatToDB: 63 ms

 AbstractHistoryHandler.processStatRecords.logEventToDB: 110 ms

 AddStat.a: 16 ms

 AddStat.b: 0 ms

 BuildEventFromStatData: 15 ms

 FgProcessRecord: 16 ms

 FgProcessRecord.a: 0 ms

 FgProcessRecord.b: 16 ms

 GetHistory.a: 29939 ms

 GetHistory.b: 32 ms

 GetHistory.c: 0 ms

 GetResults.a: 0 ms

 GetResults.b: 29877 ms

 GetResults.c: 0 ms

 GetResults.d: 0 ms

 GetResults.e: 31 ms

 GetResults.f: 0 ms

 GetResults.g: 31 ms

 GetResults.h: 0 ms

 GetResults.i: 0 ms

 GetResults.j: 0 ms

 GetResults.k: 0 ms

 MergeEventResults: 0 ms

 MergeEventResults.sort: 0 ms

 NodeService.logEventToDB.insertNotifications: 47 ms

 NodeService.logEventToDB.rulePreProcessing: 0 ms

 ProcessData.a: 0 ms

 ProcessData.b: 29971 ms

 ProcessData.c: 0 ms

 ProcessData.d: 141 ms

 ProcessData.e: 0 ms

 ProcessStatRecord.a: 0 ms

 ProcessStatRecord.b: 16 ms

 ProcessStatRecords.a: 16 ms

 ProcessStatRecords.b: 172 ms

 SCCNotif.insertNotification: 16 ms

 SCCNotif.insertNotification-list: 47 ms

 SCCNotif.insertNotification-list.executeBatchUpdate: 47 ms

 SCCNotif.insertNotification-list.insertNotificationExt: 0 ms

 SCCNotif.insertNotification-list.keepProcessSummaryServiceInformed: 0 ms

 SCCNotif.insertNotification.executeUpdate: 16 ms

 SCCNotif.insertNotification.keepProcessSummaryServiceInformed: 0 ms

 SCCNotificationJdbcDAO.keepProcessSummaryServiceInformed: 0 ms

 32

This information is basically a rehash of the summary data, with some embellishments. The “additional
values (for internal use), which can be very helpful to further pin point areas of performance problems but
can be difficult to decipher.

 33

The following outline form of the data shown may help as indentation is used to give a breakdown of the
higher-level’s time value (note the order of the outline does not always indicate the order of the work
performed).

• ProcessData.a – time to invoke adjustToNodeTime() which normalizes time values

• ProcessData.b – time to invoke getHistory()

o GetHistory.a – time to get data from server and to build stat records out of it

• GetResults.a – time to construct request for data

• GetResults.b – time to get response as a document and convert it to a String[1]

• GetResults.c – time to build a list of Arrived file records

• GetResults.d – time to invoke processArrivedFileRecords()

• GetResults.e – time to build a list of Route records

• GetResults.f – time to invoke processRouteRecords()

• GetResults.g – time to build a list of Delivery records

• GetResults.h – time to invoke processDeliveryRecords()

• GetResults.i – time to build a list of Route records

• GetResults.j – time to deduplicate the list of Route records

• GetResults.k – time to get and process missing information

o GetHistory.b – time to process all the stat records constructed

• FgProcessRecord.a – time to invoke getProcessName()

• FgProcessRecord.b[2]

▪ AddStat.a – time to construct a GISStatistic

▪ AddStat.b – time to put the GISStatistic built in appropriate data structure

o GetHistory.c – time to order the collection of records constructed

• ProcessData.c – time to adjust times and set sequence numbers for getHistory() results

• ProcessData.d – time to invoke processStatRecords() which logs and processes getHistory() results

o ProcessStatRecords.a – time to skip duplicate data

• ProcessStatRecord.a – time to construct SCCNotification

• ProcessStatRecord.b – time to attempt insertion of notification

▪ SCCNotif.insertNotification

• SCCNotif.insertNotification.executeUpdate

• SCCNotif.insertNotification.insertNotificationExt

• SCCNotif.insertNotification.keepProcessSummaryServiceInformed

o ProcessStatRecords.b - time to process the none duplicate data

• BuildEventFromStatData – time to construct SCCNotifications for non-dupe data

• AbstractHistoryHandler.processStatRecords.logEventToDB

▪ AbstractHistoryHandler.logStatToDB - time to update _STAT_LOG

file:///C:/Users/IBM_ADMIN/Desktop/CC%20B2Bi%20Metrics.docx%23_ftn1
file:///C:/Users/IBM_ADMIN/Desktop/CC%20B2Bi%20Metrics.docx%23_ftn2

 34

▪ AbstractHistoryHandler.logEventToDB - time to update EVENTS and more…

• NodeService.logEventToDB.rulePreProcessing

• NodeService.logEventToDB.insertNotifications

• SCCNotif.insertNotification-list

• SCCNotif.insertNotification-list.executeBatchUpdate

• SCCNotif.insertNotification-list.insertNotificationExt

• SCCNotif.insertNotification-list.keepProcessSummaryServiceInformed

• Unaccounted for time is time to queue events for broadcasting

• ProcessData.e – time to update checkpoint data

[1] To see just the amount of time to get the response, look for “ms to perform and extractFirstAttachment for” in the
Engine log files
[2] Equivalent to FgProcessRecord time

TIP – Better B2Bi monitoring performance may be obtained by limiting the protocols specified for monitoring
to the ones you need data for.

TIP – Better B2Bi monitoring performance may be obtained by disabling collection of Sterling File Gateway
and / or Business Process data.

file:///C:/Users/IBM_ADMIN/Desktop/CC%20B2Bi%20Metrics.docx%23_ftnref1
file:///C:/Users/IBM_ADMIN/Desktop/CC%20B2Bi%20Metrics.docx%23_ftnref2

 35

8 Rules and Actions
As ICC events are generated, they are processed by the RuleService in the EP they originated from, and the
number of rules defined, and the actions associated with rules that are triggered, can have a large impact on
the performance of ICC.

TIP – Disable or delete all ICC rules, including built-in rules, that are not being used to improve ICC
performance.

ICC can typically handle having 1000s of enabled rules without incurring performance problems, but while
some actions, e.g. email actions, have little impact on ICC performance, others can have a large, negative,
impact, e.g. OS Commands and Alert 0 actions.

8.1 OS Commands

OS Commands specify a script, or batch file, ICC is to perform when a rule is triggered by an event. When a
script or batch file initiated by ICC takes a long time to run it delays processing of other events by ICC so be
sure they always run quickly.6

TIP – When scripts or batch files will take more than a few milli-seconds to run, have them execute whatever
they do asynchronously, instead of synchronously, when possible.

8.2 Alert 0

Alert 0 is a special alert action that tells ICC to find, and handle, any alerts that are “related” to the event that
triggered that rule. To find alerts related to an event, ICC runs one, or more, SQL statements and that SQL
causes contention on the ICC EVENTS table and can result in noticeable performance issues.

TIP – Since alerts can only be related to another when they are generated by the same SLC instance or by a
linked Rule, Alert 0 actions should only be specified in conjunction with linked rules, or a rule whose criteria
matches SLC events. Beware that some built-in rules may violate this principle!

Erroneous Alert 0 actions are something to look for whenever you notice event broadcasting performance is
slow, which occurs in the Rule service, the EventMonitorService, and more. In most cases where Alert 0
actions are used erroneously, the “No operation” action should be used instead.

6 When a script or batch file is initiated by ICC an engine log entry is written that tells how long it took to run.

 36

9 Miscellaneous

9.1 Row Counts

At startup, ICC initiates a query to ascertain the row counts in the various database tables used to hold event
data. These queries can be onerous to performance as they may cause contention on those tables while ICC
is trying to add data to them.

These row counts are displayed by the ICC Swing console:

If you do not mind having the counts above be wrong, and only show the amount of data added since ICC was
last started, the engine property DO_NOT_CALCULATE_ROW_COUNTS may, and should, be specified with a
value of TRUE – the default value is FALSE.

When DO_NOT_CALCULATE_ROW_COUNTS is set to TRUE ICC will no longer initiate queries to get row
counts for its tables at startup or when the daily purge operation is run.

 37

9.2 ICC Web Console

The ICC Web console performance is highly dependent on the performance of the database server. When
queries initiated by the web console run slowly, the time to show data in the web console will be long.

By default, the ICC Web console typically displays a years’ worth of information when displaying data about
monitored servers, including alert, completed process, and completed file transfer counts. The queries used
to ascertain this information may be too onerous for the ICC database server, which will result in long delays
in displaying the results.

Sometimes these performance problems may be addressed by doing index maintenance and / or retaining
less data in the ICC database tables.

TIP – An engine property named DEFAULT_DAYS_OF_HISTORY, whose default is 366, may be used to

limit the date range used by the queries to less (or potentially more) than a years’ worth of information,
which can result in far better performance.

 38

To see the queries initiated by the Web console, and the amount of time it takes to run them, look at the
contents of the ICC web server log files. They can be found in:

 <CC Install folder>/web/wlp/usr/servers/defaultServer/logs

Either looking at the messages.log or trace.log file will work. If you do not see queries, and the times
it takes to perform them, in either of these files, update the file jvm.options, which is found in the
defaultServer folder, such that the values are TRUE for both:

• 10x.logDebugMessagesToStandardOut and

• 10x.printStackTracesToStandardErr

You may also need to update the file:

<CC Install folder>/web/wlp/usr/servers/defaultServer/log4j2.xml

The bottom of this file needs to be changed from:

<!-- <Root level="DEBUG" includeLocation="false" additivity="false"> -->

<!-- <AppenderRef ref="textFile" /> -->

<!-- <AppenderRef ref="Console" level="DEBUG"/> -->

<!-- </Root> -->

 <Root level="INFO" includeLocation="false" additivity="false">

 <AppenderRef ref="textFile" />

 <AppenderRef ref="Console" level="ERROR"/>

 </Root>

 </Loggers>

</Configuration>

To:

<!-- <Root level="DEBUG" includeLocation="false" additivity="false"> -->

<!-- <AppenderRef ref="textFile" /> -->

<!-- <AppenderRef ref="Console" level="DEBUG"/> -->

<!-- </Root> -->

 <Root level="DEBUG" includeLocation="false" additivity="false">

 <AppenderRef ref="textFile" />

 <AppenderRef ref="Console" level="DEBUG"/>

 </Root>

 </Loggers>

</Configuration>

After a few moments, look at new output that is logged. Restarting the ICC web server should not be
necessary for these changes to take effect.

TIP – When you enable logging of debug messages it is best if you limit web console usage to a single user to
prevent so much output being logged that you cannot find what you are looking for.

Also, know time stamp values logged may be in UTC, or local time, or a combination of the two.

9.3 Clearing Queued Processes

There is a thread in ICC named QueuedProcessesClearJob whose purpose is ensuring processes other than
from Connect:Direct that have completed do not remain in the Web console’s queued processes view after
they have completed, which occasional occurs when additional events related to a process are received after
its end event.

 39

An engine property named QUEUED_PROCS_CLEAR_JOB_INTERVAL, whose default is 5 (unit is minute),

controls how frequently this thread looks for processes that have completed but are still shown as queued.

TIP – A simple way to lower contention on the ICC CC_PROCESS database table is to decrease the frequency
at which the QueuedProcessesClearJob runs, which can be achieved by increasing the value for the engine
property QUEUED_PROCS_CLEAR_JOB_INTERVAL to a value greater than five.

9.4 Memory

ICC requires quite a bit of memory to run. Factors involved in knowing how much memory is required
include, but are not limited to:

• The number and types of servers being monitored

• The number of Rules and SLCs

• The configuration setting value for simultaneousCdPollers

• The batch size specified for ICC database table operations

It is beyond the scope of this document to tell you how to compute the exact amount of memory you’ll need
to run ICC, but typically, the more that you can allocate to it the better and don’t try anything less than 6GB
for ICC, which means no less than having 8GB for the server ICC is installed on. ICC has no known “memory
leaks” so if you find your ICC installation crashing due to “out of memory” errors, allocate more and restart it.

If you’d like to know more, please contact sales and ask about having a performance review done. IBM
Professional Services would be able to perform a “Server Sizing Study” for you.

9.5 Reporting

Out of the box, ICC limits reports to 5000 rows. You can increase the report limit by updating ICC engine
property values. And when you increase the report limit, you may also need to allow more memory to be
allocated to Cognos, the ICC reporting service, by updating the cogstartup.xml file, to avoid out of
memory errors from occurring.

To increase the report limit, edit the ReportService.xml property reportRecordLimit.

To allocate more memory to Cognos, the Cognos web server JVM heap size to be specific, you will need to
edit the cogstartup.xml file found in the ICC installation subfolder Cognos/configuration. By
default, the maximum heap size allowed may only be 768mb (newer releases of ICC specify a maximum of
4096mb). Look for the value associated with the parameter “dispatcherMaxMemory” in
cogStartup.xml and increase the value found there if out of memory exceptions occur when you

attempt to run large reports.

The engine.properties value for DB_BATCH_SIZE specifies the number of records to use for batch
insertion when temporary tables are created for use by Cognos Reports. Valid values are 1 - 2,147,483,647.
This value must contain an integer greater than or equal to 1. The default is 1000 rows. Increasing the batch
size above the default of 1000 rows might improve the speed of the report by one or two seconds. However,
increasing the batch size could result in out of memory errors occurring.

 40

The engine.properties value for JDBC_DRIVER_MAX_ROWS controls how many records are read at one

time from the database when paging thru tables with large amounts of data for Sterling File Gateway Detail
by Producer reports. The default for this property is 10000 and it is only used for this one report. You may
get better performance for this report by increasing this value.

 41

10 Performance Related Engine Properties and Configuration Settings

10.1 Engine Properties

Property Default Description

BYPASS_EVENT_MONITOR_FOR_EVENTS True

When true events go directly to the SLC and
FileAgent services, which is more efficient,
instead of indirectly via the EventMonitor
service.

May only be set to true for single EP
installations.

CLEAR_NODE_STATUS_AT_CEP_STARTUP True

Tells the CEP to reset the status of all monitored
servers to Unknown at startup instead of
leaving them in their current state, which could
cause invalid status information to be shown
until all EPs have been started and begun
monitoring servers they are the active EP for.

Note a message will be logged, and written to
the console, telling how long this operation takes
when the property is set to true.

New in ICC 6.1.2.1

DEFAULT_DAYS_OF_HISTORY 366

Used to limit the date range used by the Web
console queries for data to less (or potentially
more) than a years’ worth of information, which
can result in far better performance.

Set this property lower for better Web console
performance, albeit causing it to show less data.

DO_NOT_CALCULATE_ROW_COUNTS False

Tells ICC whether at startup, and subsequently
once a day, to initiate queries to ascertain the
row counts in various database tables it stores
information in. The values obtained are only
seen in the ICC Swing console.

These queries can be onerous to run - they can
take a long time and cause database contention.
Set this property True for best performance.

As of ICC 6.1.2.1 changes made to this property
do not require ICC to be restarted to take effect.

 42

Property Default Description

EVENT_MONITOR_EVENT_COUNT_FOR_CATCHUP 200

Tells the EventMonitor the count of events that
will trigger it to enter catchup mode, which
means it will not wait the normal amount of time
before attempting to retrieve more event data
for processing, which is subsequently passed on
to the SLC and FileAgent services.

This property is not new in ICC 6.1.2.1, but the
previous default was 100.

As of ICC 6.1.2.1 changes made to this property
do not require ICC to be restarted to take effect.

EVENT_MONITOR_EVENT_LIMIT_PER_RUN 1000

Tells the EventMonitor the query limit for
retrieving event data.

This property is not new in ICC 6.1.2.1, but the
previous defaults were smaller.

As of ICC 6.1.2.1 changes made to this property
do not require ICC to be restarted to take effect.

EVENT_MONITOR_JUST_SLC False

When this property is true the EventMonitor
logic limits the query used for retrieving event
data to only get data the SLC service requires,
which makes the query, and the EventMonitor,
run faster.

For best performance set this property TRUE but
you should not do this if Connect:Direct File
Agents are being monitored.

Changes made to this property do not require
ICC to be restarted to take effect.

New in ICC 6.1.2.1

EVENT_MONITOR_THREADS
Number of
server CPUs

Tells the EventMonitor logic how many threads
to use while reconstructing ICC events from
database data.

Changes made to this property do not require
ICC to be restarted to take effect.

Default changed in ICC 6.1.2.1 from 2 to the
number of CPUs the server running ICC has.

 43

Property Default Description

FILEAGENT_MONITOR_RATE 60

Tells how many seconds to wait in-between
checks for status of Connect:Direct File agents.

When monitoring 1000s of File agents this
number should be increased to limit the amount
of time spent status checking by the
FileAgentService.

Changes made to this property do not require
ICC to be restarted to take effect.

New in ICC 6.1.2.1

MAX_PROCESSES_TO_SUMMARIZE_AT_ONCE 5000

This value limits the number of ready to be
summarized processes that will be queried for by
the ProcessSummaryService.

This property exposes a previously hard-coded
value that was already in the logic.

Changes made to this property do not require
ICC to be restarted to take effect.

New in ICC 6.1.2.1

MAX_TIME_TO_BEGIN_TRAP_PROCESSING_WITH

OUT_WARNING 30000

A value in milliseconds that tells ICC when it
should generate warnings in the ICC log files
about slow processing of SNMP traps received
from Connect:Direct File agents.

New in ICC 6.1.2.1

MULTI_THREAD_OSA_EVENT_PROCESSING False

Controls whether OSA event processing is done
in a synchronous fashion, where by OSA records
received are retrieved from the database, then
processed, and then deleted from the database,
or in an asynchronous fashion, where one thread
–handleUnprocessedEvents, is used to process
OSA records previously retrieved from the
database by another thread –
queueUnprocessedEvents, which retrieves OSA
records from the database and queues them for
processing by handleUnprocessedEvents.

MULTI_THREAD_SERVER_REASSIGNMENT True
Prior to ICC 6.1.2.1 server reassignments were
performed one at a time. I.e. serially. In ICC

 44

Property Default Description

6.1.2.1 multiple threads may be used to speed
up the server reassignment process.

This property is used in conjunction with the
properties SERVER_REASIGNMENT_QUEUE_SIZE and
SERVER_REASSIGNMENT_THREADS.

For best server reassignment performance this
property should be TRUE.

Changes made to this property do not require
ICC to be restarted to take effect.

New in ICC 6.1.2.1

NON_PERSISTENT_CD_CONNECTION False

Prior to ICC 6.1.2.1 NodeServices for
Connect:Direct servers would stay connected, if
possible, between polls of their respective
servers.

While it is less efficient to disconnect between
polls, to facilitate monitoring of thousands of
servers without running out of server socket
connections, you can now configure ICC to do so,
which limits the number of socket connections
ICC keeps open at one time.

Changes made to this property do not require
ICC to be restarted to take effect.

New in ICC 6.1.2.1

OSA_EVENTS_TO_GET_AT_ONCE_COUNT 500

Sets the limit used in queries initiated by the
queueUnprocessedEvents thread to retrieve
unprocessed OSA events.

This property is only used when OSA event
processing is done asynchronously, which is
controlled by the
MULTI_THREAD_OSA_EVENT_PROCESSING property.

OSA_EVENTS_TO_PROCESS_QUEUE_SIZE 5000

Sets the limit on the queue used to contain
unprocessed OSA events retrieved by
queueUnprocessedEvents thread, which are
subsequently processed by the
handleUnprocessedEvents thread.

 45

Property Default Description

Always make the value for this property be some
multiple, greater than one, of the
OSA_EVENTS_TO_GET_AT_ONCE_COUNT value.

This property is only used when OSA event
processing is done asynchronously, which is
controlled by the
MULTI_THREAD_OSA_EVENT_PROCESSING property.

PROCESS_SUMMARY_THREADS 4

Dictates how many threads are used by the
ProcessSummarizationService to summarize
completed processes.

The larger this value is set; the higher memory
and CPU utilization will become.

PROCS_TO_SUMMARIZE_AT_ONCE 50

Dictates how many processes may be
summarized at once by each process
summarization thread, which are called Process
Summary Workers.

Changes made to this property do not require
ICC to be restarted to take effect.

The larger this value is set; the higher memory
utilization will become.

Changes made to this property do not require
ICC to be restarted to take effect.

QUEUED_PROCS_CLEAR_JOB_INTERVAL 5

Controls the frequency at which the
QueuedProcessesClearJob runs, which ensures
completed B2Bi processes are removed from the
Queued process view.

The larger this value is made the less contention
there will be on the CC_PROCESS database table,
and the longer completed B2Bi processes may
remain in the Web console queued process view.

Set this property value higher for better
performance.

SERVER_REASSIGNMENT_QUEUE_SIZE 100000

Count of server reassignments that may be
queued for handling.

Note this property is used in conjunction with

 46

Property Default Description

the property MULTI_THREAD_SERVER_REASSIGNMENT.

New in ICC 6.1.2.1

SERVER_REASSIGNMENT_THREADS
Number of
server CPUs

Prior to ICC 6.1.2.1, server reassignments were
handled synchronously. I.e. one at a time.

Multiple threads may be configured as of ICC
6.1.2.1 to handle reassignments and will be by
default.

Note this property is used in conjunction with
the property MULTI_THREAD_SERVER_REASSIGNMENT.

New in ICC 6.1.2.1

SERVER_STARTUP_SHUTDOWN_THREADS
Number of
server CPUs

Prior to ICC 6.1.2.1 NodeService threads for
monitor servers were started one at a time when
EPs started, and they were stopped one at a time
when EPs were shutdown.

As of ICC 6.1.2.1 multiple threads may be used to
speed up the startup and shutdown processes.

This property is used in conjunction with the
property
USE_MULTIPLE_THREADS_FOR_NODESERVICE_STARTUP_

AND_SHUTDOWN.

New in ICC 6.1.2.1

SHOW_FILE_AGENTS

True when
number of
monitored
servers less
than
TREE_NODE_SI

ZE_LIMIT
property
value.

Controls whether or not Connect:Direct File
agents will be displayed in the Swing console
node tree.

Displaying File agents in the Swing console's
node tree is very processor intensive due to the
number of status events that must be handled
and has a large, detrimental effect to Swing
console performance.

Note you are always able to efficiently view
Connect:Direct File agents and their status via
the ICC Web console.

By default, File agents will not be displayed when
the number of monitored servers exceeds the

 47

Property Default Description

property value for TREE_NODE_SIZE_LIMIT.

For best performance do not alter this property.

New in ICC 6.1.2.1

SUMMARIZE_MILLIS_DELAY_FOR_PROCS 1000

This property value, a value in milliseconds,
limits the query used by the
ProcessSummaryService when searching for
processes ready to be summarized. Processes
that completed less than the amount of time
specified will not be returned.

This is not a new property, but the default was
changed from 0 to 1000 in ICC 6.1.2.1 to avoid
occasional problems detected during testing that
caused events to not be associated with
completed processes when they should have
been.

Changes made to this property do not require
ICC to be restarted to take effect.

SUMMARY_TABLES_PURGE_BATCH_SIZE 100

Used as a row limit in the SQL used to delete
summary table data.

Since the SQL used to delete data causes more
contention on the database than the SQL used to
find the data to be deleted, the value for this
property should be kept relatively small
compared to the property
SUMMARY_TABLES_PURGE_QUEUE_SIZE.

SUMMARY_TABLES_PURGE_FILE_COUNTS False

Tells ICC to also purge data from the
FILE_COUNTS database table when other
summary data is purged.

For best performance set this property to TRUE.

SUMMARY_TABLES_PURGE_QUEUE_SIZE 100000
Sets the limit on the SQL used to ascertain the
data to be deleted from the summary tables.

SUMMARY_TABLES_PURGE_ROLL_UP False

Tells ICC to also purge data from the ROLL_UP
database table when other summary data is
purged.

For best performance set this property to TRUE.

 48

Property Default Description

TIME_BETWEEN_GETTING_UNPROCESSED_OSA_E

VENTS 5000

A value in milliseconds that dictates how long
the queueUnprocessedEvents thread waits after
retrieving and queuing unprocessed OSA events.

Note when the number of OSA events previously
retrieved matches the
OSA_EVENTS_TO_GET_AT_ONCE_COUNT property value
no wait is performed. This is referred to as
catchup mode.

This property is only used when OSA event
processing is done asynchronously, which is
controlled by the
MULTI_THREAD_OSA_EVENT_PROCESSING property.

TIME_BETWEEN_PROCESSING_QUEUED_OSA_EVE

NTS

5000

A value in milliseconds that dictates how long
the handleUnprocessedEvents thread waits after
processing the previous batch of OSA events
before attempting to process more.

Note when the batch size of OSA events
previously processed matches the
OSA_EVENTS_TO_PROCESS_QUEUE_SIZE size, no wait
occurs. This is referred to as catchup mode.

This property is only used when OSA event
processing is done asynchronously, which is
controlled by the
MULTI_THREAD_OSA_EVENT_PROCESSING property.

TREE_NODE_SIZE_LIMIT 5000

Tells the Swing console logic to not display the
node tree by default when the number of
monitored servers exceeds the value specified.

A menu option in the Swing console may be used
to display the node tree regardless of the
number of monitored servers.

Note contrary to the message displayed in the
Swing console when TREE_NODE_SIZE_LIMIT is
exceeded, the number of servers in the node
tree, unlike the number of Connect:Direct File
agents, has little to no effect on Swing console or
EP performance.

New in ICC 6.1.2.1

 49

Property Default Description

UPDATE_SERVER_GROUPS_NEW_LOGIC True

Prior to ICC 6.1.2.1 the time to add servers grew
by a significant amount as the number of
monitored servers increased. Inefficiencies
found in the logic used to update server groups
were primarily to blame for the slowness. The
logic was updated to make updates of server
groups significantly faster and this property
controls whether the new logic is used.

For best performance this property should be
TRUE.

Changes made to this property do not require
ICC to be restarted to take effect.

New in ICC 6.1.2.1

USE_MULTIPLE_THREADS_FOR_NODESERVICE_S

TARTUP_AND_SHUTDOWN True

Prior to ICC 6.1.2.1 NodeService threads, which
monitor servers, were started one at a time
when EPs started, and stopped one at a time
when EPs were shutdown. Now multiple threads
may be used to speed up the ICC startup and
shutdown processes.

This property is used in conjunction with
SERVER_STARTUP_SHUTDOWN_THREADS.

For best performance this property should be
TRUE.

New in ICC 6.1.2.1

 50

10.2 Configuration Settings

Setting Default Description Location

simultaneousCdPollers 7

Limits the resources consumed by all
NodeServices, not just those for
Connect:Direct despite its name, by
restricting the number that may
communicate with their respective
monitored servers simultaneously.

For optimum performance
simultaneousCdPollers is
typically set to 25% of the number of
total number of polled monitored
server types assigned to each EP with
a maximum value of 30. This is just a
guideline and not definitive however.

CCEngineService.xml

eventsToProcessAtOnce 1000

Specifies the limit on OSA records to
be retrieved by the
UnprocessedEventService from the
CC_UNPROCESSED_EVENT table.

This property is only used when OSA
event processing is done
synchronously.

EventProcessorService.xml

hbCheckFrequency 10000

A value in milliseconds that controls
the frequency at which the
EventProcessorService checks to see
which OSA servers are late in sending
in Heartbeat events, which is the
indicator that they are down.

The larger this value is, the longer the
delay could be for ICC to ascertain
that an OSA server has stopped
communicating with ICC and that its
status should change to Down.

Increasing this property value boosts
performance and the expense of
learning that OSA servers are down
as soon as possible.

EventProcessorService.xml

historyCheckFrequency 10000

A value in milliseconds that controls
the frequency at which the
EventProcessorService checks for
new OSA events to process from
servers monitored by this EP.

EventProcessorService.xml

 51

Setting Default Description Location

Note when the number of OSA
events processed matches
eventsToProcessAtOnce no wait is
performed between checks for new
OSA events to process. This is
referred to as catchup mode.

This property is only used when OSA
event processing is done
synchronously, which is controlled by
the
MULTI_THREAD_OSA_EVENT_PROCESSING
property.

